General Logarithms and Exponentials

 $\ln(x)$

Last day, we looked at the inverse of the logarithm function, the exponential function. we have the following formulas:

$$\ln(x) = \ln a + \ln b, \ \ln(\frac{a}{b}) = \ln a - \ln b \qquad \ln e^x = x \text{ and } e^{\ln(x)} = x$$

$$\ln a^x = x \ln a \qquad e^{x+y} = e^x e^y, \ e^{x-y} = \frac{e^x}{e^y}, \ (e^x)^y = e^{xy}.$$

$$\lim_{x \to \infty} \ln x = \infty, \ \lim_{x \to 0} \ln x = -\infty \qquad \lim_{x \to \infty} e^x = \infty, \text{ and } \lim_{x \to -\infty} e^x = 0$$

$$\frac{d}{dx} \ln |x| = \frac{1}{x} \qquad \frac{d}{dx} e^x = e^x$$

$$\int \frac{1}{x} dx = \ln |x| + C \qquad \int e^x dx = e^x + C$$

e×

For a > 0 and x any real number, we define

$$a^x = e^{x \ln a}, \quad a > 0.$$

The function a^x is called the exponential function with base a. Note that $\ln(a^x) = x \ln a$ is true for all real numbers x and all a > 0. (We saw this before for x a rational number).

Note: The above definition for a^x does not apply if a < 0.

We can derive the following laws of exponents directly from the definition and the corresponding laws for the exponential function e^x :

$$a^{x+y} = a^{x}a^{y}$$
 $a^{x-y} = \frac{a^{x}}{a^{y}}$ $(a^{x})^{y} = a^{xy}$ $(ab)^{x} = a^{x}b^{x}$

- ▶ For example, we can prove the first rule in the following way:
- ► $a^{x+y} = e^{(x+y) \ln a}$
- $\blacktriangleright = e^{x \ln a + y \ln a}$
- $\blacktriangleright = e^{x \ln a} e^{y \ln a} = a^x a^y.$
- The other laws follow in a similar manner.

We can also derive the following rules of differentiation using the definition of the function a^x , a > 0, the corresponding rules for the function e^x and the chain rule.

$$\frac{d}{dx}(a^x) = \frac{d}{dx}(e^{x \ln a}) = a^x \ln a \qquad \qquad \frac{d}{dx}(a^{g(x)}) = \frac{d}{dx}e^{g(x) \ln a} = g'(x)a^{g(x)} \ln a$$

- Example: Find the derivative of 5^{x^3+2x}
- Instead of memorizing the above formulas for differentiation, I can just convert this to an exponential function of the form e^{h(x)} using the definition of 5^u, where u = x³ + 2x and differentiate using the techniques we learned in the previous lecture.

• We have, by definition,
$$5^{x^3+2x} = e^{(x^3+2x) \ln 5}$$

► Therefore
$$\frac{d}{dx}5^{x^3+2x} = \frac{d}{dx}e^{(x^3+2x)\ln 5} = e^{(x^3+2x)\ln 5}\frac{d}{dx}(x^3+2x)\ln 5$$

► $= (\ln 5)(3x^2+2)e^{(x^3+2x)\ln 5} = (\ln 5)(3x^2+2)5^{x^3+2x}.$

For a > 0 we can draw a picture of the graph of

$$y = a^{x}$$

using the techniques of graphing developed in Calculus I.

- We get a different graph for each possible value of a.
 We split the analysis into two cases,
- since the family of functions $y = a^x$ slope downwards when 0 < a < 1 and
- the family of functions $y = a^x$ slope upwards when a > 1.

Case 1:Graph of $y = a^x$, 0 < a < 1

- ► y-intercept: The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1.$
- x-intercept: The values of a^x = e^{x ln a} are always positive and there is no x intercept.

- Slope: If 0 < a < 1, the graph of y = a^x has a negative slope and is always decreasing, ^d/_{dx}(a^x) = a^x ln a < 0. In this case a smaller value of a gives a steeper curve [for x < 0].</p>
- The graph is concave up since the second derivative is $\frac{d^2}{dx^2}(a^x) = a^x(\ln a)^2 > 0.$
- As $x \to \infty$, $x \ln a$ approaches $-\infty$, since $\ln a < 0$ and therefore $a^x = e^{x \ln a} \to 0$.
- As $x \to -\infty$, $x \ln a$ approaches ∞ , since both x and $\ln a$ are less than 0. Therefore $a^x = e^{x \ln a} \to \infty$.

For 0 < a < 1, $\lim_{X \to \infty} a^X = 0$, $\lim_{X \to -\infty} a^X = \infty$

Case 2: Graph of $y = a^x$, a > 1

- y-intercept: The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1.$
- x-intercept: The values of
 a^x = e^{x ln a} are always positive and there is no x intercept.

- ▶ If a > 1, the graph of $y = a^x$ has a positive slope and is always increasing, $\frac{d}{dx}(a^x) = a^x \ln a > 0$.
- The graph is concave up since the second derivative is $\frac{d^2}{dx^2}(a^x) = a^x(\ln a)^2 > 0.$
- In this case a larger value of a gives a steeper curve [when x > 0].
- As $x \to \infty$, $x \ln a$ approaches ∞ , since $\ln a > 0$ and therefore $a^x = e^{x \ln a} \to \infty$
- As $x \to -\infty$, $x \ln a$ approaches $-\infty$, since x < 0 and $\ln a > 0$. Therefore $a^x = e^{x \ln a} \to 0$.

For
$$a > 1$$
, $\lim_{X \to \infty} a^X = \infty$, $\lim_{X \to -\infty} a^X = 0$.

We now have 4 different types of functions involving bases and powers. So far we have dealt with the first three types:

If a and b are constants and g(x) > 0 and f(x) and g(x) are both differentiable functions.

$$\frac{d}{dx}a^{b} = 0, \qquad \frac{d}{dx}(f(x))^{b} = b(f(x))^{b-1}f'(x), \qquad \frac{d}{dx}a^{g(x)} = g'(x)a^{g(x)}\ln a,$$
$$\frac{d}{dx}(f(x))^{g(x)}$$

For $\frac{d}{dx}(f(x))^{g(x)}$, we use logarithmic differentiation or write the function as $(f(x))^{g(x)} = e^{g(x) \ln(f(x))}$ and use the chain rule.

Also to calculate limits of functions of this type it may help write the function as $(f(x))^{g(x)} = e^{g(x) \ln(f(x))}$.

Example Differentiate x^{2x^2} , x > 0.

- We use logarithmic differentiation on $y = x^{2x^2}$.
- Applying the natural logarithm to both sides, we get

$$\ln(y) = 2x^2 \ln(x)$$

Differentiating both sides, we get

$$\frac{1}{y}\frac{dy}{dx} = (\ln x)4x + \frac{2x^2}{x}.$$

• Therefore
$$\frac{dy}{dx} = y \left[4x \ln x + 2x \right] = x^{2x^2} \left[4x \ln x + 2x \right].$$

Example What is

$$\lim_{x\to\infty}x^{-x}$$

$$\lim_{x\to\infty} x^{-x} = \lim_{x\to\infty} e^{-x\ln(x)}$$

- As $x \to \infty$, we have $x \to \infty$ and $\ln(x) \to \infty$, therefore if we let $u = -x \ln(x)$, we have that u approaches $-\infty$ as $x \to \infty$.
- ► Therefore

$$\lim_{x\to\infty} e^{-x\ln(x)} = \lim_{u\to-\infty} e^u = 0$$

General Logarithmic Functions

►

Since $f(x) = a^x$ is a monotonic function whenever $a \neq 1$, it has an inverse which we denote by

$$f^{-1}(x) = \log_a x.$$

We get the following from the properties of inverse functions:

$$f^{-1}(x) = y \text{ if and only if } f(y) = x$$
$$\boxed{\log_a(x) = y \text{ if and only if } a^y = x}$$
$$f(f^{-1}(x)) = x \quad f^{-1}(f(x)) = x$$
$$\boxed{a^{\log_a(x)} = x \quad \log_a(a^x) = x.}$$

Change of base Formula

It is not difficult to show that $\log_a x$ has similar properties to $\ln x = \log_e x$. This follows from the **Change of Base Formula** which shows that The function $\log_a x$ is a constant multiple of $\ln x$.

$$\log_a x = \frac{\ln x}{\ln a}$$

- Let $y = \log_a x$.
- Since a^x is the inverse of $\log_a x$, we have $a^y = x$.
- Taking the natural logarithm of both sides, we get $y \ln a = \ln x$,
- which gives, $y = \frac{\ln x}{\ln a}$.
- The algebraic properties of the natural logarithm thus extend to general logarithms, by the change of base formula.

$$\log_a 1 = 0, \quad \log_a(xy) = \log_a(x) + \log_a(y), \quad \log_a(x') = r \log_a(x).$$

for any positive number $a \neq 1$. In fact for most calculations (especially limits, derivatives and integrals) it is advisable to convert $\log_a x$ to natural logarithms. The most commonly used logarithm functions are $\log_{10} x$ and $\ln x = \log_e x$.

Change of base formula

$$\log_a x = \frac{\ln x}{\ln a}$$

From the above change of base formula for $\log_a x$, we can easily derive the following **differentiation formulas**:

$$\frac{d}{dx}(\log_a x) = \frac{d}{dx}\frac{\ln x}{\ln a} = \frac{1}{x \ln a} \qquad \qquad \frac{d}{dx}(\log_a g(x)) = \frac{g'(x)}{g(x) \ln a}.$$

A special Limit

We derive the following limit formula by taking the derivative of $f(x) = \ln x$ at x = 1, We know that f'(1) = 1/1 = 1. We also know that

$$f'(1) = \lim_{x \to 0} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0} \ln(1+x)^{1/x} = 1.$$

Applying the (continuous) exponential function to the limit on the left hand side (of the last equality), we get

$$e^{\lim_{x\to 0}\ln(1+x)^{1/x}} = \lim_{x\to 0} e^{\ln(1+x)^{1/x}} = \lim_{x\to 0} (1+x)^{1/x}.$$

Applying the exponential function to the right hand sided(of the last equality), we gat $e^1 = e$. Hence

$$e = \lim_{x \to 0} (1+x)^{1/x}$$

Note If we substitute y = 1/x in the above limit we get

$$e = \lim_{y \to \infty} \left(1 + \frac{1}{y}\right)^y$$
 and $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$

where n is an integer (see graphs below). We look at large values of n below to get an approximation of the value of e.

A special Limit

