General Logarithms and Exponentials

Last day, we looked at the inverse of the logarithm function, the exponential function. we have the following formulas:

$$
\begin{array}{cc}
\ln (x) & \\
\ln (a b)=\ln a+\ln b, \ln \left(\frac{a}{b}\right)=\ln a-\ln b & \ln e^{x}=x \text { and } e^{\ln (x)}=x \\
\ln a^{x}=x \ln a & e^{x+y}=e^{x} e^{y}, e^{x-y}=\frac{e^{x}}{e^{y}},\left(e^{x}\right)^{y}=e^{x y} \\
\lim _{x \rightarrow \infty} \ln x=\infty, \lim _{x \rightarrow 0} \ln x=-\infty & \lim _{x \rightarrow \infty} e^{x}=\infty, \text { and } \lim _{x \rightarrow-\infty} e^{x}=0 \\
\frac{d}{d x} \ln |x|=\frac{1}{x} & \frac{d}{d x} e^{x}=e^{x} \\
\int \frac{1}{x} d x=\ln |x|+C & \int e^{x} d x=e^{x}+C
\end{array}
$$

General exponential functions

For $a>0$ and x any real number, we define

$$
a^{x}=e^{x \ln a}, \quad a>0
$$

The function a^{x} is called the exponential function with base a.
Note that $\ln \left(a^{x}\right)=x \ln a$ is true for all real numbers x and all $a>0$. (We saw this before for x a rational number).
Note: The above definition for a^{x} does not apply if $a<0$.

Laws of Exponents

We can derive the following laws of exponents directly from the definition and the corresponding laws for the exponential function e^{x} :

$$
a^{x+y}=a^{x} a^{y} \quad a^{x-y}=\frac{a^{x}}{a^{y}} \quad\left(a^{x}\right)^{y}=a^{x y} \quad(a b)^{x}=a^{x} b^{x}
$$

- For example, we can prove the first rule in the following way:
- $a^{x+y}=e^{(x+y) \ln a}$
- $=e^{x \ln a+y \ln a}$
$-=e^{x \ln a} e^{y \ln a}=a^{x} a^{y}$.
- The other laws follow in a similar manner.

Derivatives

We can also derive the following rules of differentiation using the definition of the function $a^{x}, a>0$, the corresponding rules for the function e^{x} and the chain rule.

$$
\frac{d}{d x}\left(a^{x}\right)=\frac{d}{d x}\left(e^{x \ln a}\right)=a^{x} \ln a \quad \frac{d}{d x}\left(a^{g(x)}\right)=\frac{d}{d x} e^{g(x) \ln a}=g^{\prime}(x) a^{g(x)} \ln a
$$

- Example: Find the derivative of $5^{x^{3}+2 x}$.
- Instead of memorizing the above formulas for differentiation, I can just convert this to an exponential function of the form $e^{h(x)}$ using the definition of 5^{u}, where $u=x^{3}+2 x$ and differentiate using the techniques we learned in the previous lecture.
- We have, by definition, $5^{x^{3}+2 x}=e^{\left(x^{3}+2 x\right) \ln 5}$
- Therefore $\frac{d}{d x} 5^{x^{3}+2 x}=\frac{d}{d x} e^{\left(x^{3}+2 x\right) \ln 5}=e^{\left(x^{3}+2 x\right) \ln 5} \frac{d}{d x}\left(x^{3}+2 x\right) \ln 5$
- $=(\ln 5)\left(3 x^{2}+2\right) e^{\left(x^{3}+2 x\right) \ln 5}=(\ln 5)\left(3 x^{2}+2\right) 5^{x^{3}+2 x}$.

Graphs of General exponential functions

For $a>0$ we can draw a picture of the graph of

$$
y=a^{x}
$$

using the techniques of graphing developed in Calculus I.

- We get a different graph for each possible value of a. We split the analysis into two cases,
- since the family of functions $y=a^{x}$ slope downwards when $0<a<1$ and
- the family of functions $y=a^{x}$ slope upwards when $a>1$.

Case 1:Graph of $y=a^{x}, 0<a<1$

- y-intercept: The y-intercept is given by $y=a^{0}=e^{0 \ln a}=e^{0}=1$.
- x-intercept: The values of $a^{x}=e^{x \ln a}$ are always positive and there is no x intercept.
- Slope: If $0<a<1$, the graph of $y=a^{x}$ has a negative slope and is always decreasing, $\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a<0$. In this case a smaller value of a gives a steeper curve [for $x<0$].
- The graph is concave up since the second derivative is $\frac{d^{2}}{d x^{2}}\left(a^{x}\right)=a^{x}(\ln a)^{2}>0$.
- As $x \rightarrow \infty, x \ln$ a approaches $-\infty$, since $\ln a<0$ and therefore $a^{x}=e^{x \ln a} \rightarrow 0$.
- As $x \rightarrow-\infty, x \ln a$ approaches ∞, since both x and $\ln a$ are less than 0 . Therefore

$$
a^{x}=e^{x \ln a} \rightarrow \infty
$$

$$
\text { For } 0<a<1, \quad \lim _{x \rightarrow \infty} a^{x}=0, \quad \lim _{x \rightarrow-\infty} a^{x}=\infty
$$

Case 2: Graph of $y=a^{x}, a>1$

-

- y-intercept: The y-intercept is given by
$y=a^{0}=e^{0 \ln a}=e^{0}=1$.
- x-intercept: The values of $a^{x}=e^{x \ln a}$ are always positive and there is no x intercept.
- If $a>1$, the graph of $y=a^{x}$ has a positive slope and is always increasing, $\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a>0$.
- The graph is concave up since the second derivative is $\frac{d^{2}}{d x^{2}}\left(a^{x}\right)=a^{x}(\ln a)^{2}>0$.
- In this case a larger value of a gives a steeper curve [when $x>0]$.
- As $x \rightarrow \infty, x \ln$ a approaches ∞, since $\ln a>0$ and therefore $a^{x}=e^{x \ln a} \rightarrow \infty$
- As $x \rightarrow-\infty, x \ln$ a approaches $-\infty$, since $x<0$ and $\operatorname{In} a>0$. Therefore $a^{x}=e^{x \ln a} \rightarrow 0$.

$$
\text { For } a>1, \quad x \rightarrow \lim _{x \rightarrow \infty} a^{x}=\infty, \quad x \rightarrow-\infty a^{x}=0
$$

Power Rules

We now have 4 different types of functions involving bases and powers. So far we have dealt with the first three types:
If a and b are constants and $g(x)>0$ and $f(x)$ and $g(x)$ are both differentiable functions.

$$
\begin{gathered}
\frac{d}{d x} a^{b}=0, \quad \frac{d}{d x}(f(x))^{b}=b(f(x))^{b-1} f^{\prime}(x), \quad \frac{d}{d x} a^{g(x)}=g^{\prime}(x) a^{g(x)} \ln a, \\
\frac{d}{d x}(f(x))^{g(x)}
\end{gathered}
$$

For $\frac{d}{d x}(f(x))^{g(x)}$, we use logarithmic differentiation or write the function as $(f(x))^{g(x)}=e^{g(x) \ln (f(x))}$ and use the chain rule.

- Also to calculate limits of functions of this type it may help write the function as $(f(x))^{g(x)}=e^{g(x) \ln (f(x))}$.

Example

Example Differentiate $x^{2 x^{2}}, x>0$.

- We use logarithmic differentiation on $y=x^{2 x^{2}}$.
- Applying the natural logarithm to both sides, we get

$$
\ln (y)=2 x^{2} \ln (x)
$$

- Differentiating both sides, we get

$$
\frac{1}{y} \frac{d y}{d x}=(\ln x) 4 x+\frac{2 x^{2}}{x}
$$

- Therefore $\frac{d y}{d x}=y[4 x \ln x+2 x]=x^{2 x^{2}}[4 x \ln x+2 x]$.

Example

Example What is

$$
\lim _{x \rightarrow \infty} x^{-x}
$$

- $\lim _{x \rightarrow \infty} x^{-x}=\lim _{x \rightarrow \infty} e^{-x \ln (x)}$
- As $x \rightarrow \infty$, we have $x \rightarrow \infty$ and $\ln (x) \rightarrow \infty$, therefore if we let $u=-x \ln (x)$, we have that u approaches $-\infty$ as $x \rightarrow \infty$.
- Therefore

$$
\lim _{x \rightarrow \infty} e^{-x \ln (x)}=\lim _{u \rightarrow-\infty} e^{u}=0
$$

General Logarithmic Functions

Since $f(x)=a^{x}$ is a monotonic function whenever $a \neq 1$, it has an inverse which we denote by

$$
f^{-1}(x)=\log _{a} x
$$

- We get the following from the properties of inverse functions:

$$
\begin{aligned}
& f^{-1}(x)=y \quad \text { if and only if } \quad f(y)=x \\
& \log _{a}(x)=y \quad \text { if and only if } \quad a^{y}=x
\end{aligned}
$$

$$
\begin{gathered}
f\left(f^{-1}(x)\right)=x \quad f^{-1}(f(x))=x \\
a^{\log _{a}(x)}=x \quad \log _{a}\left(a^{x}\right)=x .
\end{gathered}
$$

Change of base Formula

It is not difficult to show that $\log _{a} x$ has similar properties to $\ln x=\log _{e} x$. This follows from the Change of Base Formula which shows that The function $\log _{a} x$ is a constant multiple of $\ln x$.

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

- Let $y=\log _{a} x$.
- Since a^{x} is the inverse of $\log _{a} x$, we have $a^{y}=x$.
- Taking the natural logarithm of both sides, we get $y \ln a=\ln x$,
- which gives, $y=\frac{\ln x}{\ln a}$.
- The algebraic properties of the natural logarithm thus extend to general logarithms, by the change of base formula.

$$
\log _{a} 1=0, \quad \log _{a}(x y)=\log _{a}(x)+\log _{a}(y), \quad \log _{a}\left(x^{r}\right)=r \log _{a}(x)
$$

for any positive number $a \neq 1$. In fact for most calculations (especially limits, derivatives and integrals) it is advisable to convert $\log _{a} x$ to natural logarithms. The most commonly used logarithm functions are $\log _{10} x$ and $\ln x=\log _{e} x$.

Using Change of base Formula for derivatives

Change of base formula

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

From the above change of base formula for $\log _{a} x$, we can easily derive the following differentiation formulas:

$$
\frac{d}{d x}\left(\log _{a} x\right)=\frac{d}{d x} \frac{\ln x}{\ln a}=\frac{1}{x \ln a} \quad \frac{d}{d x}\left(\log _{a} g(x)\right)=\frac{g^{\prime}(x)}{g(x) \ln a}
$$

A special Limit

We derive the following limit formula by taking the derivative of $f(x)=\ln x$ at $x=1$, We know that $f^{\prime}(1)=1 / 1=1$. We also know that

$$
f^{\prime}(1)=\lim _{x \rightarrow 0} \frac{\ln (1+x)-\ln 1}{x}=\lim _{x \rightarrow 0} \ln (1+x)^{1 / x}=1
$$

Applying the (continuous) exponential function to the limit on the left hand side (of the last equality), we get

$$
e^{\lim _{x \rightarrow 0} \ln (1+x)^{1 / x}}=\lim _{x \rightarrow 0} e^{\ln (1+x)^{1 / x}}=\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

Applying the exponential function to the right hand sided(of the last equality), we gat $e^{1}=e$. Hence

$$
e=\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

Note If we substitute $y=1 / x$ in the above limit we get

$$
e=\lim _{y \rightarrow \infty}\left(1+\frac{1}{y}\right)^{y} \quad \text { and } \quad e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

where n is an integer (see graphs below). We look at large values of n below to get an approximation of the value of e.

A special Limit

$$
\begin{aligned}
& n=10 \rightarrow\left(1+\frac{1}{n}\right)^{n}=2.59374246, \quad n=100 \rightarrow\left(1+\frac{1}{n}\right)^{n}=2.70481383, \\
& n=100 \rightarrow\left(1+\frac{1}{n}\right)^{n}=2.71692393, \quad n=1000 \rightarrow\left(1+\frac{1}{n}\right)^{n}=2.71814593 \text {. } \\
& \text { points }\left(\mathrm{n},(1+1 / \mathrm{n})^{n}\right), \mathrm{n}=1 \ldots 100
\end{aligned}
$$

